Name: Solution

MATH 231 ED5 / Spring 2010

Quiz 12

Instructions: You have $\lfloor e^2 \rfloor$ minutes to complete this quiz. No calculators, notes, phones, socializing, or other suspicious behaviors are allowed. Read the problems carefully. Explain your answers and show your work.

- 1. Find a Cartesian equation for the polar equation $r = \tan \theta \sec \theta$.
- (a) We can proceed directly to polar via the identities $x^2 + y^2 = r^2$ and $\frac{y}{x} = \tan \theta$:

Notice that $\tan \theta = \frac{y}{x}$ implies $\sec \theta = \frac{r}{x}$ by a triangle argument. Then

$$r = \tan \theta \sec \theta$$
 \Rightarrow $r^2 = r \tan \theta \sec \theta$ \Rightarrow $r^2 = r \left(\frac{y}{x}\right) \left(\frac{r}{x}\right)$ \Rightarrow $r^2 = r^2 \frac{y}{x^2}$ \Rightarrow $1 = \frac{y}{x^2}$ \Rightarrow $y = x^2$.

(b) It is a bit easier (in my opinion) to convert to parametric first:

 $x = r \cos \theta = \tan \theta \sec \theta \cos \theta = \tan \theta$ and

$$y = r \sin \theta = \tan \theta \sec \theta \sin \theta = \tan^2 \theta$$
, so

$$y = x^2$$
.