Solutions

1. Find the sum of the series

$$\frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{16^n (2n+1)!}.$$

- A. 0
- B. $\frac{1}{2}$
- **C.** $\frac{1}{\sqrt{2}}$
- D. $\frac{\sqrt{3}}{2}$
- E. The series does not converge.

Solution: We have that

$$\frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{16^n (2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{\left(\frac{\pi}{4}\right)^{2n+1}}{(2n+1)!}$$
$$= \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}.$$

2. Find the sum of the series

$$\sum_{n=0}^{\infty} {1 \over 2 \choose n} 2^n.$$

- A. $\sqrt{3}$
- B. $\sqrt{2}$
- C. $\frac{1}{\sqrt{3}}$
- D. $\frac{1}{\sqrt{2}}$
- E. The series does not converge.

Solution: We have that the binomial series

$$\sqrt{1+x} = \sum_{n=0}^{\infty} {1 \over 2 \choose n} x^n$$

has radius of convergence R=1. Therefore x=2 does not lie in its interval of convergence, and the sum in question diverges.

3. Which of the following is the Maclaurin series of $x \arctan(3x^2)$?

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{4n+2}}{2n+1}$$

B.
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{4n+3}}{2n+1}$$

C.
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^{4n+3} x^{4n+3}}{2n+1}$$

D.
$$\sum_{n=0}^{\infty} (-1)^{2n+1} \frac{3^{2n+1} x^{4n+3}}{2n+1}$$

E.
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{2n+1}}{2n+1}$$

Solution: The Maclaurin series for $\arctan(3x^2)$ is

$$\arctan\left(3x^2\right) = \sum_{n=0}^{\infty} (-1)^n \frac{(3x^2)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1}x^{4n+2}}{2n+1},$$

so the Maclaurin series for $x \arctan(3x^2)$ is

$$x \arctan (3x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1}x^{4n+3}}{2n+1}.$$

4. Evaluate the limit

$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}.$$

- A. 0
- B. $-\frac{1}{3!}$ C. $\frac{1}{5!}$
- D. $-\frac{1}{7!}$
- E. $\frac{1}{9!}$

Solution: We have that $\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$, so

$$\sin x - x + \frac{1}{6}x^3 = \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots,$$

and

$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5} = \lim_{x \to 0} \frac{\frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots}{x^5} = \lim_{x \to 0} \left(\frac{1}{5!} - \frac{1}{7!}x^2 + \dots\right) = \frac{1}{5!}.$$

- 5. If the Maclaurin series for the function $f(x) = \sqrt{1+x}$ is used to approximate $\sqrt{1.1}$, what is the minimum number of terms required to achieve three decimal places of accuracy?
 - A. One
 - B. Two
 - C. Three
 - D. Four
 - E. Five

Solution: The Maclaurin series for f is

$$\sqrt{1+x} = \sum_{n=0}^{\infty} {1 \choose n} x^n.$$

Using this series to approximate $\sqrt{1.1}$, we get

$$\sqrt{1.1} = \sqrt{1 + 10^{-1}} = \sum_{n=0}^{\infty} {1 \choose 2 \choose n} 10^{-n} = 1 + \frac{1}{2} 10^{-1} - \frac{1}{8} 10^{-2} + \frac{1}{16} 10^{-3} - \dots,$$

which is an alternating series (after the first term). Since $a_3 = \frac{1}{16}(10^{-3})$ is the first term to have absolute value smaller than 10^{-3} , the desired sum is $a_0 + a_1 + a_2$, i.e. three terms are required.

6. Do the following series converge or diverge?

(a)
$$\sum_{n=0}^{\infty} \frac{4^n}{3^n + 5^n}$$

Solution: We do a limit comparison with the series $\sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^n$. We get that

$$\lim_{n\to\infty}\left(\frac{4^n}{3^n+5^n}\right)\left(\frac{5}{4}\right)^n=\lim_{n\to\infty}\frac{5^n}{3^n+5^n}=\lim_{n\to\infty}\frac{1}{\left(\frac{3}{5}\right)^n+1}=1.$$

Since the value of this limit is positive, and the series $\sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^n$ is a convergent geometric series, by the limit comparison test, the original series converges.

(b)
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$

Solution: For $n \geq 1$, $0 \leq \frac{\pi}{n} \leq \pi$, so $b_n = \sin\left(\frac{\pi}{n}\right) \geq 0$. Let $f(x) = \sin\left(\frac{\pi}{x}\right)$, so $f'(x) = -\frac{\pi}{x^2}\cos\left(\frac{\pi}{x}\right)$. We see that f'(x) < 0 when $0 \leq \frac{\pi}{x} < \frac{\pi}{2}$, which has solution x > 2. Therefore the sequence $\{b_n\}$ is decreasing for $n \geq 3$. Since

$$\lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = \sin 0 = 0,$$

this series converges by the alternating series test.

7. Find the interval of convergence for each of the following series.

(a)
$$\sum_{n=1}^{\infty} n^n x^n$$

Solution: Using the root test, we get that

$$\lim_{n \to \infty} \sqrt[n]{|n^n x^n|} = \lim_{n \to \infty} n |x| = \begin{cases} 0 & \text{if } x = 0, \\ \infty & \text{if } x \neq 0. \end{cases}$$

Except when x = 0, this limit is not less than one, so the series only converges at the center, when x = 0.

(b)
$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$$

Solution: Using the ratio test, we get that

$$\lim_{n\to\infty}\left|\left(\frac{(-3)^{n+1}x^{n+1}}{\sqrt{n+2}}\right)\left(\frac{\sqrt{n+1}}{(-3)^nx^n}\right)\right|=\lim_{n\to\infty}3\left|x\right|\frac{\sqrt{n+1}}{\sqrt{n+2}}=3\left|x\right|.$$

We therefore must solve the inequality 3|x| < 1, which has solution $-\frac{1}{3} < x < \frac{1}{3}$. We now must check the endpoints $x = \pm \frac{1}{3}$.

When $x = \frac{1}{3}$, we get the series

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}.$$

Clearly $b_n = \frac{1}{\sqrt{n+1}} \ge 0$, $\frac{1}{\sqrt{n+2}} \le \frac{1}{\sqrt{n+1}}$, so $\{b_n\}$ is decreasing. Also,

$$\lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 0,$$

so by the alternating series test, this series converges.

When $x = -\frac{1}{3}$, we get the series

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

which diverges by the p-test.

The interval of convergence is therefore $\left(-\frac{1}{3}, \frac{1}{3}\right]$.

8. Consider the function

$$f\left(x\right) = \frac{e^{x^2}}{1 - x^2}.$$

(a) Write the first three nonzero terms in the Maclaurin series of f.

Solution: We have that

$$f(x) = e^{x^2} \left(\frac{1}{1 - x^2} \right) = \left(1 + x^2 + \frac{1}{2} x^4 + \dots \right) \left(1 + x^2 + x^4 + \dots \right)$$
$$= 1 + x^2 + x^4 + x^2 + x^4 + \frac{1}{2} x^4 + \dots$$
$$= 1 + 2x^2 + \frac{5}{2} x^4 + \dots$$

(b) Compute $f^{(3)}(0)$ and $f^{(4)}(0)$.

Solution: The formula for the Maclaurin series for f is

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \frac{1}{3!}f^{(3)}(0)x^3 + \frac{1}{4!}f^{(4)}(0)x^4 + \cdots$$

Since the Maclaurin series for f computed in part (a) has no x^3 term, we get that $f^{(3)}(0) = 0$. Since the coefficient of the x^4 in the Maclaurin series for f computed in part (a) is $\frac{5}{2}$, we get that

$$f^{(4)}(0) = 4! \left(\frac{5}{2}\right) = 60.$$

9. Compute

$$\sum_{n=1}^{\infty} \frac{n}{2^n}.$$

Solution: For |r| < 1, we have

$$\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n.$$

Differentiating this equation, we get

$$\frac{1}{(1-r)^2} = \sum_{n=1}^{\infty} nr^{n-1},$$

so

$$\frac{r}{(1-r)^2} = \sum_{n=1}^{\infty} nr^n.$$

In particular, when $r = \frac{1}{2}$,

$$2 = \sum_{n=1}^{\infty} \frac{n}{2^n}.$$

- 10. Let f be a function that is infinitely differentiable at x = a.
 - (a) Define the Taylor series of f centered at x = a.

Solution:
$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
.

(b) Define the degree-N Taylor polynomial of f centered at x = a.

Solution:
$$T_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
.

(c) Define the Taylor remainder $R_N(x)$.

Solution: $R_N(x) = f(x) - T_N(x)$.

(d) What does Taylor's theorem say about $R_N(x)$?

Solution: $R_N(x) = \frac{f^{(N+1)}(z)}{(N+1)!}(x-a)^{N+1}$ for some z between a and x.