Name Solutions

• READ THE FOLLOWING DIRECTIONS!

- Do NOT open the exam until instructed to do so.
- You have until 10:50am to complete this exam. When you are told to stop writing, do it or you will lose all points on the page you write on.
- You may not communicate with other students during this test.
- No written materials of any kind are allowed. No scratch paper is allowed except as given by the proctors.
- No phones, calculators, or any other electronic devices are allowed for any reason, including checking the time (a simple wristwatch is fine).
- Any case of cheating will be taken extremely seriously.
- Show all your work and explain your answers.
- Before turning in your exam, check to make certain you've answered all the questions.
- Make sure to check whether you are asked to set up or to evaluate integrals.

Some possibly useful formulas:

$$\cos^{2} t = \frac{1}{2}(1 + \cos(2t))$$
$$\sin^{2} t = \frac{1}{2}(1 - \cos(2t))$$
$$\sin(2t) = 2\sin(t)\cos(t)$$

Question:	1	2	3	4	Total
Points:	25	25	35	15	100
Score:					

1. (25 points) Compute the flow of $\mathbf{F}(x,y,z) = \langle yz^2 + e^z + x, ze^z + x + y, xe^x + xy + z \rangle$ across the surface R that is the boundary of the solid cube D given by $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$. Which direction is it?

flow across =
$$\int_{-1-1}^{1} \int_{-1}^{1} div F dxdydy$$
 (Divergence Thm)
= $\int_{-1-1}^{1} \int_{-1-1}^{1} (1+1+1) dxdydy$
= $3 \cdot Volume(D)$
= $3 \cdot 2^3$

2. (25 points) Find the volume contained between the hemispheres $z = \sqrt{4 - x^2 - y^2}$ and $z = \sqrt{1 - x^2 - y^2}$ and the cone $z = \sqrt{x^2 + y^2}$.

Region in spherical coord's is
$$1 \le \beta \le 2$$

 $0 \le \beta \le 2\pi$

Valume =
$$\int_{0}^{2\pi} \int_{0}^{\pi/4} (p^{2} \sin \theta) dp d\theta d\theta$$

$$= \frac{1}{3} (2^{3} - 1^{3}) \cdot (1 - \frac{12}{2}) \cdot 2\pi$$

$$= \frac{14}{3} \pi (1 - \frac{52}{2})$$

- 3. (35 points) Consider the surface R that is the part of the cone $z = \sqrt{x^2 + y^2}$ with $z \le 1$. Let $\mathbf{F}(x, y, z) = \langle yz, -xz, 1 \rangle$.
 - (a) Directly compute $\iint_R \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$. Use a downward/outward normal vector.

Parametrize surface:
$$X = r\cos\theta$$
 $0 \le r \le 1$
 $y = r\sin\theta$ $0 \le \theta \le 2\pi$
 $Z = \sqrt{x^2 + y^2} = r$

$$\overrightarrow{dS} = \begin{vmatrix} \vec{z} & \vec{j} & \vec{k} \\ \cos\theta & \sin\theta & 1 \\ -r\sin\theta & r\cos\theta & 0 \end{vmatrix} = \langle -r\cos\theta, -r\sin\theta, r \rangle$$

$$\begin{bmatrix} \cos\theta & \sin\theta & 1 \\ -r\sin\theta & r\cos\theta & 0 \end{vmatrix} = \langle -r\cos\theta, -r\sin\theta, r \rangle$$

$$\begin{bmatrix} \cos\theta & \sin\theta & 1 \\ -r\sin\theta & r\cos\theta & 0 \end{vmatrix} = \langle -r\cos\theta & -r\sin\theta & -r\cos\theta \\ -r\sin\theta & -r\cos\theta & -r\cos\theta \end{vmatrix} = \langle -r\cos\theta & -r\cos\theta & -r\cos\theta \\ = \int_0^{2\pi} \int_0^1 3r^2 drd\theta = 2\pi$$

(b) Check your answer to (a) using Stokes's Theorem.

$$X = \sin t$$
 $0 \le t \le 2\pi$
 $Y = \cos t$
 $Z = 1$

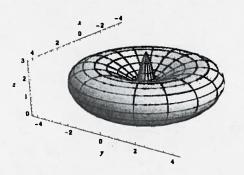
$$\int_{C} F \cdot \langle dx, dy, dz \rangle$$

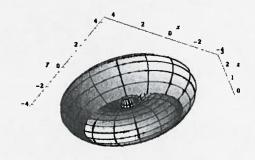
$$= \int_{0}^{2\pi} \langle \cos t \cdot 1, -\sin t \cdot 1, 1 \rangle \cdot \langle \cos t, -\sin t, 0 \rangle dt$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} dt$$

$$= 2\pi$$
Page 4

4. (15 points) Let $F(x, y, z) = \langle x, -y + z, y^2 \rangle$. Set up an integral (that you could feed into Mathematica) to compute the flow of F across the surface R shown below. R can be described in spherical coordinates by $\rho = 1.5(2 - \sin(4\varphi))$ (\$\theta\$ free), $0 \le \varphi \le \pi/2$. (In Mathematica's spherical notation, that's $r[s_-, t_-] =$ $1.5(2 - Sin[4s]), 0 \le s \le \pi/2.$ Carefully explain your work. (Hint: don't work too hard.)





div F = 1-1+0=0,

so seek a substitute surface

Boundary of R is where $\varphi = \frac{\pi}{2}$, so $\rho = 1.5(2-0) = 3$, $\varphi = 1.5(2-0) = 3$

So the disk of radius 3 in the xy-plane will work.

Parametrize D: $X = r \cos \theta$ $0 \le r \le 3$ $y = r \sin \theta$ $0 \le \theta \le 2\pi$ z = 0 $d\vec{S} = \begin{bmatrix} c & c & c \\ cos\theta & sin\theta & 0 \end{bmatrix} = \langle 0,0,r \rangle$. $cos\theta & sin\theta & 0 \end{bmatrix} = \langle 0,0,r \rangle$.

 $\iint_{0}^{2\pi} F \cdot d\vec{s} = \iint_{0}^{2\pi} \langle r\cos\theta, -r\sin\theta + 0, r^{2}\sin^{2}\theta \rangle \cdot \langle 0,0,r \rangle dr d\theta$ $= \iint_{0}^{2\pi} r^{3} \sin^{2}\theta dr d\theta$

Scratch Paper - Do Not Remove