Name:

• READ THE FOLLOWING DIRECTIONS!

- Do NOT open the exam until instructed to do so.
- You have until 10:50am to complete this exam. When you are told to stop writing, do it or you will lose all points on the page you write on.
- You may not communicate with other students during this test.
- No written materials of any kind are allowed. No scratch paper is allowed except as given by the proctors.
- No phones, calculators, or any other electronic devices are allowed for any reason, including checking the time (a simple wristwatch is fine).
- Any case of cheating will be taken extremely seriously.
- Show all your work and explain your answers.
- Before turning in your exam, check to make certain you've answered all the questions.

Some possibly useful formulas:

$$\cos^2 t = \frac{1}{2}(1 + \cos(2t))$$

$$\sin^2 t = \frac{1}{2}(1 - \cos(2t))$$

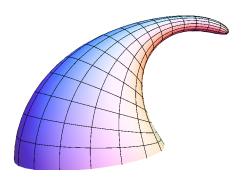
- 1. Let $\mathbf{F}(x,y) = \langle ye^x + x^2 + yz^2, e^x + z + xz^2, y + 2xyz + \cos(z) \rangle$.
 - (a) Verify that \mathbf{F} is a gradient field.

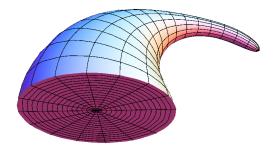
(b) Find a potential function for \mathbf{F} .

(c) Compute the flow of **F** along the part of the curve $x = \sin(\pi t)$, $y = e^t$, $z = t^3$ going from (0, 1, 0) to (0, e, 1).

2. Let $\mathbf{F}(x,y,z) = \langle 3xz^2, y^3, 3x^2z \rangle$. The surface R consists of two parts: the part of the cone $z = \sqrt{x^2 + y^2}$ with $z \le 1$ and the part of the sphere $x^2 + y^2 = 1$ inside the cone. Compute the flux of \mathbf{F} across R.

3. Let $\mathbf{F}(x,y,z) = \langle xze^{xyz}, -yze^{xyz}, -2 \rangle$. The surface R consists of two parts: the disk R_1 given by $x^2 + y^2 \le 1$ in the xy-plane, and the "hat" surface R_2 . This is pictured below from two different perspectives.





(a) Explain why the flow of \mathbf{F} across R is zero.

(b) Compute the flow of \mathbf{F} across R_1 . (Which direction is it?)

(c) Find the flow of \mathbf{F} across R_2 . (Which direction is it?)

- 4. Let $\mathbf{G} = \langle y, -x, e^{xyz} \rangle$.
 - (a) Compute curl **G**.

(b) Using (a), give another quick solution to question 3(b). (Be careful about whether the sign is correct!)

5. A very linear-minded student gets stumped by the following integral. Think nonlinear and compute the integral for them.

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$$

6. Find the volume of the region bounded by the planes

$$x + y + z = 1$$
 $x + 2y = -1$ $y + z = 2$ $x + y + z = 4$ $x + 2y = 1$ $y + z = 4$

7. Use Stokes's Theorem to compute the flow of $\mathbf{F}(x,y,z) = \langle xy,2z,3y \rangle$ along C, where C is the curve of intersection of the cylinder $x^2 + y^2 = 9$ and the plane x + z = 5. When viewed from above (from large positive z), is the flow clockwise or counterclockwise?

8. Compute $\iiint_E z \, dV$, where E is enclosed by the surface $z = x^2 + y^2$ and the plane z = 4.