WORKSHOP 20: §9.7, 9.9 MARCH 30, 2017

Name:

- (1) Let R be a relation on a set B, and let $A \subset B$. The restriction of R to A is defined as the relation $S = \{(x, y) \in R : x \in A \text{ and } y \in A\}$ on the set A. [That is, we just ignore all the elements of B A.] Prove that:
 - (a) If R is reflexive, then so is the restriction to A.
 - (b) If R is antireflexive, then so is the restriction to A.
 - (c) If R is symmetric, then so is the restriction to A.
 - (d) If R is antisymmetric, then so is the restriction to A.
 - (e) If R is transitive, then so is the restriction to A. [This is the only vaguely tricky one.] Note that this implies that if R is a partial order, then so is the restriction to A, and if R is an equivalence relation, then so is the restriction to A.
- (2) **Theorem.** Every nonempty finite poset has a maximal element.
 - (a) The proof is by induction. What should be the predicate P so that $\forall n P(n)$ is equivalent to the given theorem? (Hint: it will still need a universal quantifier.)
 - (b) Prove P(n) for a few small n. One or more of these will make up the base case.
 - (c) Prove the inductive step: assume for some arbitrary integer $k \ge 1$ that P(k) is true. Your goal is to prove that P(k+1) is true. How do you prove that statement? How can you make use of P(k)? (That might be a little tough. Struggle a little, but not forever, before asking for hints.)
- (3) Give an example to show that the previous theorem need not be true for infinite posets.
- (4) Draw the Hasse diagram for $(\{1, 2, 6, 7, 11, 12, 14, 35, 42\}, |)$. What are the maximal/minimal elements?
- (5) Which of the following are equivalence relations? For those that are, give their equivalence classes (explicitly if possible, otherwise just describe them).
 - (a) on the set of classes, xRy iff they have the same subject code
 - (b) on the set of classes, xRy iff they share subject code or course number
 - (c) on $\mathcal{P}(\mathbb{Z})$, ARB iff |A| = |B|
 - (d) on \mathbb{Z}^+ , xRy iff they share a prime factor
 - (e) on \mathbb{Z}^+ , xRy iff the sets of their prime factors are equal
 - (f) on \mathbb{Z}^+ , xRy iff the sets of their prime factors have the same cardinality
- (6) Consider the relation R on binary strings of length 3, defined by xRy if and only if y can be obtained from x by changing some number of 0's to 1's.
 - (a) Verify that R is a partial order.
 - (b) Draw the Hasse diagram for R. It should look familiar. Why?