Name:

(1) Complete the following sketch of a proof by strong induction.

Theorem. Define a sequence by $a_0 = 0$, $a_1 = 2$, and $a_{n+1} = 4(a_n - a_{n-1})$ for $n \ge 1$. Then a closed form for $\{a_n\}$ is $a_n = n \cdot 2^n$.

Proof. Proof by strong induction on n.

Inductive step. Assume that k is an integer, $k \ge ????$, and that for every $j \in \{0, ..., k\}$, we have $a_j = ?????$. [We want to show that $a_{k+1} = (k+1)2^{k+1}$.]

We have

$$a_{k+1} = ?????$$
 by the recurrence relation the inductive hypothesis
$$=?????$$
 the lower bound you gave on k above is important here! Why?
$$=???$$
 algebra
$$=???$$
 more algebra if needed?
$$=(k+1)2^{k+1}$$
 algebra

which is what we wanted to show.

So, by PSMI [the Principle of Strong Mathematical Induction], the theorem holds.

(2) The sorting algorithm mergesort below is a well-known recursive algorithm. Prove (using induction) that the time complexity of mergesort is $\Theta(n \log n)$.

```
(a_1, \ldots, a_n) a sequence of real numbers
           n, the length of the sequence, n \ge 1
Output: (d_1, \ldots, d_n), the input sequence sorted in nondecreasing order.
   Return( (a_1) ) //a list of length 1 is already sorted
left := (a_1, \ldots, a_{|n/2|})
right := (a_{\lfloor n/2 \rfloor + 1}, \dots, a_n)
(b_1,\ldots,b_{\lfloor n/2\rfloor}) := mergesort(left)
(c_1,\ldots,c_{\lceil n/2 \rceil}) := mergesort(right)
i := 1
j := 1
For k = 1 to n:
   If b_i \leq c_j
       d_k := b_i
       i := i+1
   Else //b_i > c_j
       d_k := c_j
        j := j+1
   End-if
End-for
Return (d_1, \ldots, d_n)
```

- (3) Define a sequence by $a_1 = 1$, $a_n = 2a_{\lfloor n/2 \rfloor}$ for $n \geq 2$.
 - (a) Compute the first several values of the sequence. Conjecture a closed form. (It should involve $|\log_2 n|...$)
 - (b) Prove that your closed form is correct using strong induction. (You will need a result from Workshop 10: For any $x \in \mathbb{R}$ and $m \in \mathbb{Z}$, $\lfloor x + m \rfloor = \lfloor x \rfloor + m$.)
- (4) Let $\{f_n\}$ denote the Fibonacci sequence. Prove that

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

for all n. Part of the reason this is true – and this will also save you some algebra in your proof – is that $\varphi = \frac{1+\sqrt{5}}{2}$ and $\psi = \frac{1-\sqrt{5}}{2}$ are both solutions to the equation $x^2 = x+1$. (No, it's not the prettiest formula. But you can do it!)

Notes

¹Technically, this code doesn't work; when we get to the end of one of the lists (b_i) or (c_j) , then we keep trying to compare. That is, we test If $b_i \leq c_j$, but at some point in the For loop we have $i > \lfloor n/2 \rfloor$ or $j > \lceil n/2 \rceil$ and so either b_i or c_j isn't defined. To fix the problem would take a little code that would not significantly affect the time complexity, but would muddy the code. This should not affect your answer. (And if you want to be a stickler, I could just define $a_{\lfloor n/2 \rfloor + 1} = b_{\lceil n/2 \rceil + 1} = \infty$, in which case the code will work as desired.)