WORKSHOP 9: §3.5-3.7 FEBRUARY 9, 2017

ъ т					
IN	•	n	n	Δ	٠

- (1) For which of the following sets is 2 an element? For which is {2} an element? What is the cardinality of each set?
 - (a) $\{1, 2, 3\}$
 - (b) $\{2\}$
 - (c) Ø
 - $(d) \{\emptyset\}$
 - (e) $\{\{2\}\}$
 - (f) {{2}, {{2}}}
 - (g) $\{2, \{\{2\}\}, \{2, \{2\}\}\}$
- (2) Write the following sets in roster notation:
 - (a) $\{1,2\} \times \{1,3\}$
 - (b) $\mathcal{P}(\{1,2\})$
 - (c) $\mathcal{P}(\{1,\{1\}\})$
- (3) What is the cardinality of $A \times B$, in terms of |A| and |B|?
- (4) Prove that if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.
- (5) Let $S = \{1, 2, 3\}$, and let S_i be the set of all subsets of S with cardinality i. Is $\{S_0, S_1, S_2, S_3\}$ a partition of $\mathcal{P}(S)$?
- (6) (a) Let $S = \{1, 2, 3\}$, $X = \mathcal{P}(S)$, and Y be the set of all binary strings of length 3. What is the cardinality of X? Of Y?
 - (b) Pair off the elements of X and Y in a meaningful way.
 - (c) Generalize this to $S = \{1, 2, ..., n\}$ and Y the set of binary strings of length n.
 - (d) Use problem 3 to prove Theorem 3.6.1: for every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.