Name: Solutions

• READ THE FOLLOWING DIRECTIONS!

- Do NOT open the exam until instructed to do so.
- You have 75 minutes to complete this exam. When you are told to stop writing, do it or you will lose all points on the page you write on.
- You may not communicate with other students during this test.
- No written materials of any kind are allowed. No scratch paper is allowed except as given by the proctors.
- No phones, calculators, or any other electronic devices are allowed for any reason, including checking the time (a simple wristwatch is fine).
- Any case of cheating will be taken extremely seriously.
- Show all your work and explain your answers.
- Before turning in your exam, check to make certain you've answered all the questions.

Question:	1	2	3	4	5	6	Total
Points:	15	18	14	18	15	10	90
Score:							

1. (15 points) Consider the function

$$f(x,y) = \begin{cases} \frac{7x^3y}{2x^4 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Where is f continuous?

Everywhere other than (0,0), f is a rational function [2x'' + y'' = 0 only if (x,y) = (0,0)], so it is continuous

At (0,0), we need to ask: is
$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0$$
?

Along x-axis,
$$\lim_{x\to 0} f(x,c) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$
.

Along
$$y=x$$
, $\lim_{x\to 0} f(x,x) = \lim_{x\to 0} \frac{7x^4}{3x^4} = \frac{7}{3}$.

and hence f is not continuous at (0,0).

- 2. Let $f(x,y) = x^2 + xy^2 + 2y^2$.
 - (a) (10 points) Compute each of the following: i. $f_x = 2x + y^2$

ii.
$$f_y = 2xy + 4y$$

iii.
$$f_{xx} = 2$$

iv.
$$f_{xy} = 2y$$

v.
$$f_{yy} = 2x + 4$$

(b) (8 points) Find and classify the critical points of f.

$$\begin{cases} 2x + y^2 = 0 \\ 2xy + 4y = 0 \end{cases} \longrightarrow 2y(x+2) = 0 \implies y=0 \quad \text{or} \quad x = -2 \\ x = 0 \qquad y = \pm 2 \end{cases}$$

$$D = \begin{vmatrix} 2 & 2y \\ 2y & 2x+4 \end{vmatrix} = (4x+8) - 4y^2$$

$$D(0,0) = 8 > 0$$
, $f_{xx}(0,0) = 2 > 0$, so $(0,0)$ is a local min $D(-2,\pm 2) = -16 < 0$, so $(-2,\pm 2)$ are saddle points

3. At right is the temperature T (in Celsius) of the surface of Planet X at coordinates (x, y) at several points.

A rover is traveling along the path $x(t) = 2t^2$, $y(t) = t^3 - t$, where t is the time in hours since it landed.

	3	2	4	5	6	2
	$\frac{3}{2}$	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	5	6	8	$\frac{2}{3}$
y	1 0	1	4	5 6 3 4 5	7	3
	0	3	2	4	6	3
	-1	6	4 5 4 2 8	5	4	1
		0	1	2	3	4
T				\boldsymbol{x}		

(a) (6 points) Estimate $T_x(2,0)$ and $T_y(2,0)$. Show enough work that I know that you know what you are doing.

$$T_{\times}(2,0) = \lim_{h \to 0} \frac{T(2+h,0) - T(2)}{h} \approx \frac{T(3,0) - T(2,0)}{3-2} = \frac{6-4}{1} = 2$$
.

$$T_y(2,0) \approx \frac{T(2,1)-T(2,0)}{1} = \frac{3-4}{1} = -1$$

(b) (4 points) Write the Chain Rule for computing $\frac{dT}{dt}$.

$$\frac{dT}{dt} = \frac{\partial T}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial T}{\partial y} \cdot \frac{dy}{dt}$$

(c) (4 points) Estimate $\frac{dT}{dt}$ one hour into the rover's trip. What are the units?

$$t=1$$
 $x(1) = 2,$ $y(1) = 0$

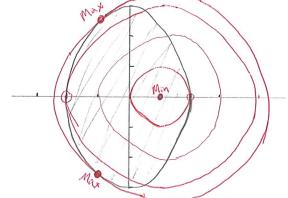
$$\frac{dT}{dt}(1) = \frac{\partial T}{\partial x}(2,0) \cdot \frac{dx}{dt}(1) + \frac{\partial T}{\partial y}(2,0) \cdot \frac{dy}{dt}(1)$$

$$\approx 2 \cdot (4t|_{t=1}) - 1 \cdot (3t-1|_{t=1}) = 2\cdot 4 - 1\cdot 2 = \frac{6}{hr}$$

- 4. Let $f(x,y) = (x-1)^2 + y^2$, and let D be the solid ellipse defined by $9x^2 + 4y^2 \le 36$.
 - (a) (5 points) Can you guarantee that f attains both a maximum and minimum on D? Explain.

Yes:
$$f$$
 is continuous on D (in fact, on all of \mathbb{R}^2), \mathcal{B} D is closed & bounded, so the Extreme Value Theorem applies.

(b) (5 points) Sketch D together with a contour plot of f, and use this to estimate the locations of the maximum and minimum of f on D (if they exist). (Indicate these locations in your drawing.)



(c) (8 points) Find the precise maximum and minimum of f on D, or say that they do not exist.

Interior!
$$\{2(x-1)=0 \Rightarrow x=1 \\ 2y=0 \Rightarrow y=0$$

Boundary:
$$\begin{cases} 2(x-1) = \lambda (18x) \\ 2y = \lambda (8y) \Rightarrow \lambda = \frac{1}{4} \text{ or } y = 0 \\ 9x^2 + 4y^2 = 36 \end{cases}$$

$$x = -\frac{4}{5}$$

$$y = \pm \frac{3}{5} \sqrt{21}$$

$$f(1,0) = 0 \quad \text{Min}$$

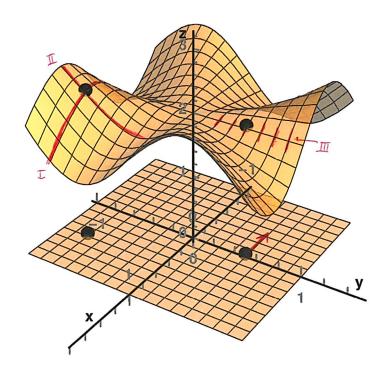
$$f(2,0) = 1$$

$$f(-2,0) = 9$$

$$f(-\frac{4}{5}, \pm \frac{3}{5}\sqrt{21}) = (-\frac{9}{5})^2 + (\pm \frac{3}{5}\sqrt{21})^2$$

$$= \frac{81}{25} + \frac{189}{25} = \frac{270}{25} = 10.8 \quad \text{Max}$$

5. Below is shown the graph of a function f, the points P = (0.5, -0.75) and Q = (0, 0.5) in the xy-plane, and the lifts of those points to the graph.



(a) (6 points) Sketch $\nabla f(Q)$ (in the xy-plane, in the picture above). In direction of increase (b) (9 points) Circle below the sign of each partial derivative. Briefly justify each

$$f_{xx}(P)$$
: + $\begin{pmatrix} - \end{pmatrix}$ 0 curve I is concave down

 $f_{yy}(P)$: + - 0 curve \mathbb{I} is... well, to the right, it looks concave up (so +?) but to the left it doesn't seem very concave (so 0?)

$$f_{xy}(Q)$$
: + $\begin{pmatrix} - \end{pmatrix}$ 0 as y increases,
the slopes f_x (in III)
are becoming more negative,
i.e. decreasing, so $(f_x)_y < 0$.

- 6. (10 points) Circle 'True' or 'False' and give a brief justification.
 - (a) True False If $\nabla f(a,b)$ exists, then f is differentiable at (a,b).

Our definition of "differentiable" is roughly that the tangent plane is a good approximation to the graph. It is not enough just for f_{χ} & f_{y} to exist [see Workshop 4].

(b) True False The tangent plane to graph of f(x, y) at a point (a, b, f(a, b)) must contain all the tangent lines to the graph at (a, b, f(a, b)).

True if f is differentiable at (a,b).
[See Workshop 4.]

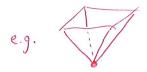
(c) True False If f is differentiable and has a local maximum at (a,b), then $\nabla f(a,b) = \mathbf{0}$.

Local maxima occur at critical points.

(d) True) False If f is differentiable at (a,b), then it is continuous at (a,b).

If the tangent plane is then the graph cannot have close to the graph ' a jump or a "crease".

(e) True False If f is continuous at (a, b), then it is differentiable at (a, b).



Scratch Paper - Do Not Remove